8 research outputs found

    From Pillars to AI Technology-Based Forest Fire Protection Systems

    Get PDF
    The importance of forest environment in the perspective of the biodiversity as well as from the economic resources which forests enclose, is more than evident. Any threat posed to this critical component of the environment should be identified and attacked through the use of the most efficient available technological means. Early warning and immediate response to a fire event are critical in avoiding great environmental damages. Fire risk assessment, reliable detection and localization of fire as well as motion planning, constitute the most vital ingredients of a fire protection system. In this chapter, we review the evolution of the forest fire protection systems and emphasize on open issues and the improvements that can be achieved using artificial intelligence technology. We start our tour from the pillars which were for a long time period, the only possible method to oversee the forest fires. Then, we will proceed to the exploration of early AI systems and will end-up with nowadays systems that might receive multimodal data from satellites, optical and thermal sensors, smart phones and UAVs and use techniques that cover the spectrum from early signal processing algorithms to latest deep learning-based ones to achieving the ultimate goal

    Le cheptel caprin et son avenir en Grèce insulaire [Thèse annexe]

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Phytomasse, productivité primaire et biogéochimie des écosystèmes méditerranéens phrygana et maquis (Ile de Naxos, Grèce)

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Integrating Remote Sensing Methods and Fire Simulation Models to Estimate Fire Hazard in a South-East Mediterranean Protected Area

    No full text
    Unlike low intensity fire which promotes landscape heterogeneity and important ecosystem services, large high-intensity wildfires constitute a significant destructive factor despite the increased amount of resources allocated to fire suppression and the improvement of firefighting tactics and levels of organization. Wildfires also affect properties, while an increasing number of fatalities are also associated with wildfires. It is now widely accepted that an effective wildfire management strategy can no longer rely on fire suppression alone. Scientific advances on fire behavior simulation and the increasing availability of remote sensing data, along with advanced systems of fire detection can significantly reduce fire hazards. In the current study remote sensing data and methods, and fire behavior simulation models are integrated to assess the fire hazard in a protected area of the southeast Mediterranean region and its surroundings. A spatially explicit fire hazard index was generated by combining fire intensity estimations and proxies of fire ignition probability. The results suggest that more than 50% of the study area, and the great majority of the protected area, is facing an extremely high hazard for a high-intensity fire. Pine forest formations, characterized by high flammability, low canopy base height and a dense shrub understory are facing the most critical hazard. The results are discussed in relation to the need for adopting an alternative wildfire management strategy

    Livestock Subsidies and Rangeland Degradation in Central Crete

    No full text
    Marginal and unstable environmental conditions force stockbreeders in drylands to develop adaptive strategies to ensure stability of production. In intensive market-oriented pastoral systems, the partial substitution of rangeland forage production by external feed increases the influence of commodity prices in stockbreeders' decisions, which become increasingly decoupled from environmental constraints. In Mediterranean countries of the European Union (EU), Common Agricultural Policy (CAP) subsidies also influence agricultural practices, potentially increasing environmental impacts. By modeling subsidy allocation to sheep and goat breeders in Crete, we showed that livestock subsidies for Less Favoured Areas (LFA) stimulated flock growth up to a point. By linking interviews of farmers to remote-sensing data in four village communities in central Crete, we tested statistically alternative hypotheses explaining the links between CAP subsidies, livestock-husbandry practices, and land degradation at the farm level. The flock growth stimulated by livestock subsidies was accompanied by the intensification of herd management, and decreasing yields and profits, with no statistical association to vegetation degradation. Farms with larger flocks became more sensitive to market fluctuations

    Land degradation and economic conditions of agricultural households in a marginal region of northern Greece

    No full text
    Land degradation is caused by and has impacts on both the social and natural components of coupled human-environment systems. However, few studies integrate both aspects simultaneously. The main objective of this study is to test a method to evaluate land degradation based on the integration of aggregate metrics of biophysical and socio-economic "degradation". We applied a framework that integrates the biophysical and socio-economic dimensions of land degradation to test the hypothesis that macro-economic policies, and in particular agricultural subsidies, are an important driving force of land degradation in marginal regions of the Mediterranean Europe. We analysed the influence of subsidies on the profitability of each crop and livestock type found in a sample of farms in a region of northern Greece. Spatial and socioeconomic data on agricultural households were collected to link remote sensing data and land degradation maps to socio-economic conditions of these households, as measured by the standard gross margin. The results demonstrate that subsidies provide a crucial socio-economic support to maintain the profitability of agricultural activities but may also promote land-use practices with damaging ecological impacts. Different levels of biophysical and socio-economic "degradation" were associated with different land use practices. The integration of the socio-economic and biophysical dimensions of land degradation reveals associations that would not be detectable if indicators along one dimension alone would be used. (C) 2008 Elsevier B.V. All rights reserved
    corecore